Wnt3a stimulation elicits G-protein-coupled receptor properties of mammalian Frizzled proteins.

نویسندگان

  • Alexey Koval
  • Vladimir L Katanaev
چکیده

Receptors of the Fz (Frizzled) family initiate Wnt ligand-dependent signalling controlling multiple steps in organism development and carcinogenesis. Fz proteins possess seven transmembrane domains, and their signalling depends on heterotrimeric G-proteins in various organisms; however, Fz proteins constitute a distinct group within the GPCR (G-protein-coupled receptor) superfamily, and Fz signalling can be G-protein-independent in some experimental setups, leading to concerns about the GPCR nature of these proteins. In the present study, we demonstrate that mammalian Fz proteins act as GPCRs on heterotrimeric G(o/i) proteins. Addition of the Wnt3a ligand to rat brain membranes or cultured cells elicits Fz-dependent guanine-nucleotide exchange on G(o/i) proteins. These responses were sensitive to a Wnt antagonist and to pertussis toxin, which decouples the G(o/i) proteins from their receptors through covalent modification. The results of the present study provide the long-awaited biochemical proof of the GPCR nature of Fz receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sec14-like phosphatidylinositol transfer proteins Sec14l3/SEC14L2 act as GTPase proteins to mediate Wnt/Ca2+ signaling

The non-canonical Wnt/Ca2+ signaling pathway plays important roles in embryonic development, tissue formation and diseases. However, it is unclear how the Wnt ligand-stimulated, G protein-coupled receptor Frizzled activates phospholipases for calcium release. Here, we report that the zebrafish/human phosphatidylinositol transfer protein Sec14l3/SEC14L2 act as GTPase proteins to transduce Wnt si...

متن کامل

G alpha o mediates WNT-JNK signaling through dishevelled 1 and 3, RhoA family members, and MEKK 1 and 4 in mammalian cells.

In Drosophila, activation of Jun N-terminal Kinase (JNK) mediated by Frizzled and Dishevelled leads to signaling linked to planar cell polarity. A biochemical delineation of WNT-JNK planar cell polarity was sought in mammalian cells, making use of totipotent mouse F9 teratocarcinoma cells that respond to WNT3a via Frizzled-1. The canonical WNT-beta-catenin signaling pathway requires both G alph...

متن کامل

Protein Kinase PKN1 Represses Wnt/β-Catenin Signaling in Human Melanoma Cells*

Advances in phosphoproteomics have made it possible to monitor changes in protein phosphorylation that occur at different steps in signal transduction and have aided the identification of new pathway components. In the present study, we applied this technology to advance our understanding of the responses of melanoma cells to signaling initiated by the secreted ligand WNT3A. We started by compa...

متن کامل

Clathrin and AP2 are required for PtdIns(4,5)P2-mediated formation of LRP6 signalosomes

Canonical Wnt signaling is initiated by the binding of Wnt proteins to their receptors, low-density lipoprotein-related protein 5 and 6 (LRP5/6) and frizzled proteins, leading to phosphatidylinositol (4,5)bisphosphate (PtdIns(4,5)P(2)) production, signalosome formation, and LRP phosphorylation. However, the mechanism by which PtdIns(4,5)P(2) regulates the signalosome formation remains unclear. ...

متن کامل

Wingless-type family member 3A triggers neuronal polarization via cross-activation of the insulin-like growth factor-1 receptor pathway

Initial axonal elongation is essential for neuronal polarization and requires polarized activation of IGF-1 receptors (IGF-1r) and the phosphatidylinositol 3 kinase (PI3k) pathway. Wingless-type family growth factors (Wnts) have also been implied in the regulation of axonal development. It is not known, however, if Wnts have any participation in the regulation of initial axonal outgrowth and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 433 3  شماره 

صفحات  -

تاریخ انتشار 2011